Recitation 3: Random Variables

Exercise 1. Find the counter examples such that:

1. $X_{n} \xrightarrow{\mathbb{P}} X$, but X_{n} does not converge to X almost surely.
2. $X_{n} \xrightarrow{\text { a.s. }} X$, but $\mathbb{E}\left[X_{n}\right]$ does not converge to $\mathbb{E}[X]$.

Exercise 2. If $\left(X_{n}\right)_{n \geqslant 1}$ is a sequence of random variables such that $X_{n} \xrightarrow{\mathbb{P}} X$, where X is finite a.s. and ϕ is a continuous function, show that $\phi\left(X_{n}\right) \xrightarrow{\mathbb{P}} \phi(X)$.

Exercise 3. For a random variable X taking its values in N_{+}, show that its expectation is

$$
\mathbb{E}[X]=\sum_{n=1}^{\infty} \mathbb{P}[X \geqslant n] .
$$

Exercise 4. Let $(\mathbb{R}, \mathcal{B}, \mu)$ be a probability space and $f \geqslant 0$ integrable on \mathbb{R}. Show that, for every $\varepsilon>0$, there exists compact set K such that

$$
\int_{K} f d \mu \geqslant \int_{\mathbb{R}} f d \mu-\varepsilon
$$

Exercise 5. (Erdös-Rény graph) We denote by G_{n} a random graph of n vertices, and every two vertices are connected independently by an edge with probability p.

1. Let E_{n} be the number of edges in G_{n}. Calculate $\mathbb{E}\left[E_{n}\right]$ and $\operatorname{Var}\left[E_{n}\right]$;
2. Let T_{n} be the number of triangles in G_{n}. Calculate $\mathbb{E}\left[G_{n}\right]$.
