Recitation 3: Random Variables

Lecturer: Chenlin Gu

Exercise 1. Find the counter examples such that:

- 1. $X_n \xrightarrow{\mathbb{P}} X$, but X_n does not converge to X almost surely.
- 2. $X_n \xrightarrow{a.s.} X$, but $\mathbb{E}[X_n]$ does not converge to $\mathbb{E}[X]$.

Exercise 2. If $(X_n)_{n \ge 1}$ is a sequence of random variables such that $X_n \xrightarrow{\mathbb{P}} X$, where X is finite a.s. and ϕ is a continuous function, show that $\phi(X_n) \xrightarrow{\mathbb{P}} \phi(X)$.

Exercise 3. For a random variable X taking its values in N_+ , show that its expectation is

$$\mathbb{E}[X] = \sum_{n=1}^{\infty} \mathbb{P}[X \ge n].$$

Exercise 4. Let $(\mathbb{R}, \mathcal{B}, \mu)$ be a probability space and $f \ge 0$ integrable on \mathbb{R} . Show that, for every $\varepsilon > 0$, there exists compact set K such that

$$\int_{K} f \, d\mu \geqslant \int_{\mathbb{R}} f \, d\mu - \varepsilon.$$

Exercise 5. (Erdös-Rény graph) We denote by G_n a random graph of n vertices, and every two vertices are connected independently by an edge with probability p.

- 1. Let E_n be the number of edges in G_n . Calculate $\mathbb{E}[E_n]$ and $\operatorname{Var}[E_n]$;
- 2. Let T_n be the number of triangles in G_n . Calculate $\mathbb{E}[G_n]$.